

JEE (ADVANCED), PMT & FOUNDATIONS

UTS- NEET -2020 MOCK TEST-05 SOLUTION

ANSWER KEY

PHYSICS

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	3	4	4	3	3	2	4	4	1	3	1	4	2	2	3	1	2	3	2	2	3	1	4	3	2
Ques.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45					
Ans.	4	3	2	1	3	3	1	1	1	1	4	2	2	1	4	4	2	4	3	4					

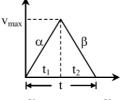
CHEMISTRY

Ques.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70
Ans.	3	3	1	1	1	2	4	2	4	1	1	3	1	1	4	4	2	3	3	4	1	2	3	3	4
Ques.	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90					
Ans.	2	1	1	1	1	1	2	4	3	2	4	1	3	1	4	1	2	3	1	4					

BIOLOGY

Ques.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110
Ans.	3	3	3	3	3	1	4	2	4	3	2	2	4	3	3	4	4	2	2	3
Ques.	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130
Ans.	3	4	2	3	1	2	1	3	3	4	2	2	3	3	3	1	2	1	1	3
Ques.	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
Ans.	3	2	2	1	3	2	1	1	1	3	1	2	3	2	2	2	4	3	1	4
Ques.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170
Ans.	4	3	3	1	3	4	2	2	1	1	2	3	2	3	2	2	3	3	1	3
Ques.	171	172	173	174	175	176	177	178	179	180										
Ans.	4	1	2	3	1	3	2	3	3	3										

3.


1.

$$\begin{split} F &= \frac{GM_{1}M_{2}}{R^{2}} \\ G &= \frac{FR^{2}}{M_{1}M_{2}} = \frac{M^{1}L^{1}T^{-2}L^{2}}{M^{1}M^{1}} = M^{-1}L^{3}T^{-2} \end{split}$$

2.

$$\vec{d} = 10\hat{i} + 12\hat{j} + 14\hat{j}$$

$$d = \sqrt{10^2 + 12^2 + 14^2} = 21 \text{ m}$$

$$\alpha = \frac{v_{max}}{t_1} \Rightarrow t_1 = \frac{v_{max}}{\alpha}$$

$$\beta = \frac{v_{max}}{t_2} \implies t_2 = \frac{v_{max}}{\beta}$$

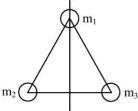
$$t = t_1 + t_2 = v_{max} \left(\frac{1}{\alpha} + \frac{1}{\beta} \right)$$
$$v_{max} = \frac{t\alpha\beta}{\alpha + \beta}$$

4.[3]
$$h = 0 + \frac{1}{2}gt^2$$

$$t = \sqrt{\frac{2h}{g}} \implies \frac{t_1}{t_2} = \sqrt{\frac{a}{b}}$$

5.[3] Use
$$h = ut + \frac{1}{2}gt^2$$

6.[2]
$$T = \frac{2u\sin\theta}{g}$$


7.[4]
$$v = u + at$$

$$0 = v - \mu gt$$

$$t = \frac{v}{\mu g}$$

8.[4]
$$\frac{1}{2} \frac{\text{m.2m}}{\text{m+2m}} v_0^2 = \frac{1}{2} kx_0^2$$
$$k = \frac{2}{3} \frac{\text{m}v_0^2}{x_0^2}$$

9.[1]
$$I = (m_2 + m_3). \frac{a^2}{4}$$

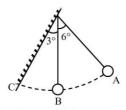
10.[3]
$$\frac{\text{KE}_{\text{rot.}}}{\text{KE}_{\text{tot.}}} = \frac{\frac{k^2}{R^2}}{1 + \frac{k^2}{R^2}}$$

11.[1]
$$x = \frac{1}{2}$$

12.[4]
$$L = 4.5 + 3 = 7.5 \text{ m}$$

13.[2]
$$x = d_{ac} \left(1 - \frac{1}{\mu} \right) = 1 \text{ cm} \uparrow$$

14.[2] Same deviation


15.[3] Energy conserved

16.[1] $\beta \propto \lambda$

17.[2] $\delta = A (\mu - 1)$

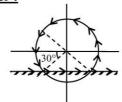
18.[3] $\omega = \sqrt{\frac{g}{L}}$: $a_{max} = \omega^2 A = \frac{g}{L} \times A = 0.5 \text{ m/s}^2$

19.[2]

Time taken by pendulum in going from A to] $= \frac{T}{T} \text{ where } T = 2\pi \sqrt{\ell}$

$$=\frac{T}{4}$$
 where $T=2\pi \sqrt{\frac{\ell}{g}}$

Time taken by pendulum in going from B to 0


$$=\frac{T}{12}$$

:. Time period of pendulum

$$= 2\left(\frac{T}{4} + \frac{T}{12}\right)$$

$$= \frac{2T}{3} = \frac{2}{3} \cdot \frac{\pi}{5} = \frac{2\pi}{15} \sec^{2}$$

Alter:

$$T' = \frac{240}{360} \cdot T$$
$$= \frac{2}{3}T$$

$$\begin{aligned} \textbf{20.[2]} \quad dB &= 10 \, log \left[\frac{I}{I_0} \right] = 10 \, log \left[\frac{K/\, r^2}{I_0} \right] \\ &= 10 \, [log \, (K') \, -\! 2 \, log \, r] \\ dB_1 &= 10 \, (log \, K' \, -\! 2 \, log \, r_1) \\ dB_2 &= 10 \, (log \, K' \, -\! 2 \, log \, r_2) \\ 3 &= dB_1 - dB_2 = 20 \, log \left[\frac{r_2}{r_1} \right] \end{aligned}$$

$$\Rightarrow (0.3) = \log \left[\frac{r_2}{r_1} \right]^2$$

$$\Rightarrow \left(\frac{r_1}{r_2} \right) = \frac{1}{\sqrt{2}}$$

21.[3]
$$\frac{n'}{n''} = \frac{V + V_s}{V - V_s} = \frac{5}{3}$$
$$3V + 3V_s = 5V - 5V_s$$
$$V_s = \frac{V}{4} = \frac{340}{4} = 85 \text{ m/s}$$

22.[1] slope =
$$\frac{nR}{P}$$

23.[4]
$$V_{rms} = \sqrt{\frac{2^2 + 3^2 + 4^2 + 5^2}{4}}$$

= $\sqrt{\frac{4 + 9 + 16 + 25}{4}} = \frac{\sqrt{54}}{2}$ cm/sec

- **24.**[3] heat received by earth per sec. per unit area = S so total heat per sec = $S \times \pi r^2$
- 25.[2] The decay constant λ is the reciprocal of the mean life τ.

Thus,
$$\lambda_{\alpha} = \frac{1}{1620}$$
 per year and $\lambda_{\beta} = \frac{1}{405}$ per year \therefore Total decay constant, $\lambda = \lambda_{\alpha} + \lambda_{\beta}$ or $\lambda = \frac{1}{1620} + \frac{1}{405} = \frac{1}{324}$ per year We know that $N = N_0 e^{-\lambda t}$

When $\frac{3}{4}$ th part of the sample has disintegrated,

$$N = N_0/4$$

$$N = N_0/4$$

$$\therefore \frac{N_0}{4} = N_0 e^{-\lambda t}$$
or
$$e^{\lambda t} = 4$$

Taking logarithm of both sides, we get

or
$$t = \frac{1}{\lambda} \log_e 2^2 = \frac{2}{\lambda} \log_e 2$$

= $2 \times 324 \times 0.693 = 449 \text{ year}$

26.[4] Momentum should be conserved

$$m_1 v_1 = m_2 v_2$$

$$\frac{4}{3} \pi r_1^2 dv_1 = \frac{4}{3} \pi r_2^3 dv_2$$

$$v_1 r_1^3 = v_2 r_2^3$$

$$\frac{\mathbf{v}_1}{\mathbf{v}_2} = \left(\frac{\mathbf{r}_2}{\mathbf{r}_1}\right)^3$$

27.[3]
$$\lambda = \frac{h}{10^{-6} \text{ v}} = \frac{h}{9.1 \times 10^{-31} \times 3 \times 10^{6}}$$

 $\therefore \text{ v} = 2.7 \times 10^{-18} \text{ m/s}$

28.[2]
$$Z = R$$
 $I = \frac{e}{R} = \frac{e_0}{\sqrt{2}R}$

29.[1]
$$< P > = \frac{E_0 I_0}{2} \cos \phi$$

30.[3]
$$I = \frac{12}{2k\Omega} = 6 \text{ mA}$$

31.[3]
$$n_h = N_A = 10^{21} \Rightarrow n_e = \frac{n_i^2}{n_h} = \frac{(10^{19})^2}{10^{21}}$$

32.[1]
$$NAND + NOT = AND$$

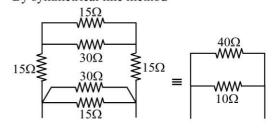
33.[1]
$$\tan \theta = \tan \theta' \cos \phi$$

34.[1]
$$I_{g} = \frac{3}{50 + 2950} = \frac{3}{3000}$$

$$I_{g} = 1 \text{ mA}$$

$$\therefore 30 \underline{\hspace{1cm}} = 1 \text{ mA}$$

$$\therefore 1 \underline{\hspace{1cm}} = \frac{1}{30}$$


$$\therefore 20 \underline{\hspace{1cm}} = \frac{1}{30} \times 20$$

$$\frac{2}{3} = \frac{3}{50 + R}$$

35.[1]
$$\frac{3}{8} \frac{\mu_0 I}{R} + \frac{\mu_0 I}{4\pi R}$$

36.[4]
$$F = \frac{\mu_0 I_1 I_2}{2\pi} \left[\frac{1}{2cm} - \frac{1}{12cm} \right] \times 15 \text{ cm}$$

37.[2] By symmetrical line method

39.[1]
$$V = E - Ir$$

40.[4]
$$C = 4\pi \in_0 a + \frac{4\pi \in_0 ab}{b-a}$$

41.[4]
$$a \xrightarrow{2} \begin{vmatrix} 1 & 4 \\ 2 & 3 \end{vmatrix} b$$

42.[2]
$$F = \frac{2K\lambda_1\lambda_2}{r}$$

43.[4]

6 plate cover closed area = $\frac{q}{\epsilon_0}$ $1 = \frac{q}{6 \epsilon_0}$

44.[3]
$$\frac{Kq_1}{3r} + \frac{Kq_2}{3r} + \frac{Kq_3}{3r} = 0$$
$$q_1 + q_2 + q_3 = 0$$
$$\frac{Kq_1}{r} + \frac{Kq_2}{2r} + \frac{Kq_3}{3r} = 0$$

CHEMISTRY

51.[2]
$$[H^{+}] = 10^{-2}$$
 \therefore $[H^{+}] = c\alpha$

$$\alpha = \frac{10^{-2}}{0.1} = 0.1 \implies \alpha = \frac{i-1}{n-1}$$

$$0.1 = \frac{i-1}{2-1} \implies i = 1.1$$

$$\pi_{\text{obs}} = \text{CST} \times i = 0.1 \times \text{R} \times \text{T} \times 1.1$$

52.[4]
$$2H^{+} + 2e^{-} \rightarrow H_{2}$$

$$E_{Red} = E^{o}_{Red} - \frac{0.059}{2} \log \frac{P_{H_{2}}}{[H^{+}]^{2}}$$

$$= 0 - \frac{0.059}{2} \log \frac{100}{1} = -0.059$$

- **55.[1]** B does not contain vacant d-orbitals.
- **56.[1]** Al passive in Conc. HNO₃
- **58.[1]** $XeF_2 \& IF_2^-$ are sp^3d and linear shape.

61.[4]
$$\mu = \sqrt{n(n+2)}$$

62.[2]
$$CuF_2 \Rightarrow Cu^{+2} = [Ar]3d^9$$
 $n = 1$, paramagnetic

64.[3]
$$\left[\text{Cu(NH}_3)_4 \right]^{+2} \text{ dsp}^2 \quad n = 1$$

68.[3] o-xylene is

$$\begin{bmatrix}
Me & Me \\
Me & Me
\end{bmatrix}$$

69.[3] Addition of Br[⊕] & OH followed by intramolecular esterification.

74.[1] Apply Saytzeff's Rule

80.[2]
$$M = \frac{wRT}{PV} = \frac{2.91 \times 0.0821 \times 298}{1.09 \times 1.22}$$

= 53.47 (B₄H₁₀)

81.[4]
$$T > \frac{\Delta H}{\Delta S}$$

82.[1] Multiply the 2nd reaction by 3 and add with other two reaction – $\frac{1}{4}P_4(s) + \frac{3}{2}H_2(g) \longrightarrow PH_3 \quad \Delta H = 1.2 \text{ kcal}$

The desired
$$\Delta H = -1.2 \text{ kcal} \times 4$$

= -4.8 kcal

- **84.[1]** True
- 85.[4] True
- 86.[1] Due to stability of carbocation $CH_3 \overset{+}{CHC_6H_5} > CH_3 \overset{+}{CH-CH_3} > CH_3 \overset{+}{CH-COOC_2H_5}$

- 87.[2] NO_2 and O_3 are bent molecules with permanent dipole moments. CO_2 is linear molecule with zero dipole moment while SiF_4 is tetrahedral with zero dipole moment.
- **88.[3]** Fact

89.[1]
$$2AB_{2(g)} \rightleftharpoons 2AB_{(g)} + B_{2(g)}$$

$$1 \qquad 0 \qquad 0$$

$$1-x \qquad x \qquad x/2$$

$$\therefore K_p = \frac{x^2.x}{2(1-x)^2} \times \left[\frac{P}{1+\frac{x}{2}}\right]^1$$

x being small : $1 - x \approx 1$ and $1 + \frac{x}{2} \approx 1$

$$\therefore K_p = \frac{x^3.P}{2}$$